日韩午夜电影av,色综合久久久久久中文网,日韩美女视频一区二区,精品不卡视频

6月4日 蔣飛達教授學術報告(數學與統計學院)

來源:數學行政作者:時間:2025-05-30瀏覽:61設置

告 人:蔣飛達 教授

報告題目:Purely interior estimates for a kind of two dimensional Monge-Ampere equations

報告時間:202564日(周三)上午10:00-11:00

報告地點:泉山17號樓101

主辦單位:數學與統計學院、數學研究院、科學技術研究院

報告人簡介:

蔣飛達,東南大學數學學院與丘成桐中心教授,博士生導師。研究領域為非線性偏微分方程。主要涉及Monge-Ampere型方程、k-Hessian型方程等完全非線性偏微分方程、及其在最優質量傳輸、幾何光學等問題中的應用;以及其他各類偏微分方程的理論和應用問題。已在Adv. Math.,Comm. Partial Differential Equations,Calc. Var. Partial Differential Equations,Arch. Ration. Mech. Anal.等權威數學期刊上發表30余篇學術論文。

報告摘要:

In this talk, we discuss a kind of fully nonlinear equations of Monge-Ampere type, which can be applied to problems arising in optimal transport, geometric optics and conformal geometry. When the coefficient of the regular term has positive lower bound, the purely interior Hessian estimate is already known for higher dimensional case. When the coefficient of the regular term is equal to zero, singular solutions can be constructed for $n\ge 3$, while the purely interior Hessian estimate is obtained for $n=2$ case. As a byproduct, anew and simpleproofof the purely interior Hessianestimate for the two dimensional standard Monge-Ampere equation is provided.




返回原圖
/

主站蜘蛛池模板: 阳江市| 隆昌县| 六盘水市| 大厂| 罗甸县| 临澧县| 大城县| 马关县| 灵山县| 兴业县| 沅江市| 石台县| 聊城市| 博乐市| 兴安盟| 台南市| 河北省| 连江县| 大渡口区| 乐陵市| 巴南区| 望谟县| 墨竹工卡县| 咸宁市| 电白县| 博客| 碌曲县| 兰西县| 上饶县| 临高县| 丰县| 砚山县| 洛扎县| 木兰县| 武宁县| 昂仁县| 南华县| 邹城市| 墨玉县| 鸡泽县| 陆良县|