日韩午夜电影av,色综合久久久久久中文网,日韩美女视频一区二区,精品不卡视频

6月4日 蔣飛達(dá)教授學(xué)術(shù)報(bào)告(數(shù)學(xué)與統(tǒng)計(jì)學(xué)院)

來(lái)源:數(shù)學(xué)行政作者:時(shí)間:2025-05-30瀏覽:61設(shè)置

報(bào) 告 人:蔣飛達(dá) 教授

報(bào)告題目:Purely interior estimates for a kind of two dimensional Monge-Ampere equations

報(bào)告時(shí)間:202564日(周三)上午10:00-11:00

報(bào)告地點(diǎn):泉山17號(hào)樓101

主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院

報(bào)告人簡(jiǎn)介:

蔣飛達(dá),東南大學(xué)數(shù)學(xué)學(xué)院與丘成桐中心教授,博士生導(dǎo)師。研究領(lǐng)域?yàn)榉蔷€性偏微分方程。主要涉及Monge-Ampere型方程、k-Hessian型方程等完全非線性偏微分方程、及其在最優(yōu)質(zhì)量傳輸、幾何光學(xué)等問(wèn)題中的應(yīng)用;以及其他各類偏微分方程的理論和應(yīng)用問(wèn)題。已在Adv. Math.,Comm. Partial Differential Equations,Calc. Var. Partial Differential Equations,Arch. Ration. Mech. Anal.等權(quán)威數(shù)學(xué)期刊上發(fā)表30余篇學(xué)術(shù)論文。

報(bào)告摘要:

In this talk, we discuss a kind of fully nonlinear equations of Monge-Ampere type, which can be applied to problems arising in optimal transport, geometric optics and conformal geometry. When the coefficient of the regular term has positive lower bound, the purely interior Hessian estimate is already known for higher dimensional case. When the coefficient of the regular term is equal to zero, singular solutions can be constructed for $n\ge 3$, while the purely interior Hessian estimate is obtained for $n=2$ case. As a byproduct, anew and simpleproofof the purely interior Hessianestimate for the two dimensional standard Monge-Ampere equation is provided.




返回原圖
/

主站蜘蛛池模板: 大同县| 永宁县| 黔南| 志丹县| 贺兰县| 鄂尔多斯市| 安庆市| 武威市| 年辖:市辖区| 芒康县| 温宿县| 遂平县| 安徽省| 客服| 孝义市| 四会市| 千阳县| 军事| 简阳市| 张家界市| 元谋县| 赤峰市| 嘉善县| 廊坊市| 鱼台县| 朝阳市| 建德市| 民丰县| 隆德县| 芜湖县| 闸北区| 云南省| 博爱县| 德令哈市| 丰顺县| 白玉县| 台江县| 鹤峰县| 济源市| 甘南县| 利辛县|