日韩午夜电影av,色综合久久久久久中文网,日韩美女视频一区二区,精品不卡视频

9月19日 小松尚夫教授學術報告(數學與統計學院)

來源:數學與統計學院作者:時間:2025-09-15瀏覽:63設置

人:小松尚夫 教授

報告題目:q-(r,s)-Stirling numbers and their applications to q-multiple zeta values

報告時間:20250919日(周五)下午4:00

報告地點云龍校區數學與統計學院6#304會議室

主辦單位:數學與統計學院、數學研究院、科學技術研究院

報告人簡介:

小松尚夫,河南科學院杰出科研基金訪問學者,日本東京大學本科,Macquarie大學數學博士。先后任職于Hirosaki大學、武漢大學、Nagasaki大學等。主要從事解析數論的研究。先后發表包括J.NumberTheory,Tokyo J.math等國際著名數學雜志論文260余篇,發表學術專著8篇,目前擔任Journal of Algebra, Number Theory: Advances and Applications, Journal of Algerian Mathematical Society雜志編委。多次獲得日本和世界各國的研究基金資助達20多項。

報告摘要:

The classical Stirling numbers (of the first kind and of the second kind) have been widely studied and generalized in various fields, in particular, in combinatorics. We show several properties of $q$-generalized $(r,s)$-Stirling numbers. On the other hand, the study on multiple zeta values has been actively studied since the 1990s. Several different types of (generalized) multiplezeta functions have been introduced and studied by many researchers. We introduce a $q$-generalization of finite version of multiple zeta values.  Though many relations have been established by several researchers, we are interested in explicit formulas at roots of unity, where we can see the forms of polynomials with rational numbers.  
        In this talk, we will show how certain kinds of generalized Stirling numbers are closely connected with finite version of multiple zeta values.
 



返回原圖
/

主站蜘蛛池模板: 伊宁县| 大兴区| 拜城县| 兰溪市| 筠连县| 新郑市| 思南县| 博白县| 永兴县| 沛县| 台安县| 阿克苏市| 广西| 城口县| 政和县| 永清县| 云阳县| 西城区| 砀山县| 久治县| 乃东县| 阳曲县| 通江县| 玉田县| 松滋市| 绥德县| 五大连池市| 方正县| 潢川县| 曲松县| 若尔盖县| 罗城| 桓仁| 卢龙县| 巴楚县| 汉川市| 慈溪市| 盐山县| 中西区| 镇安县| 阿拉善右旗|