日韩午夜电影av,色综合久久久久久中文网,日韩美女视频一区二区,精品不卡视频

10月14日 劉衛(wèi)東教授學(xué)術(shù)報(bào)告(數(shù)學(xué)與統(tǒng)計(jì)學(xué)院)

來(lái)源:數(shù)學(xué)行政作者:時(shí)間:2023-10-12瀏覽:265設(shè)置

報(bào) 告 人:劉衛(wèi)東 教授

報(bào)告題目:Online Estimation and Inference for Robust Policy Evaluation in Reinforcement Learning

報(bào)告時(shí)間:2023年10月14日(周六上午10:10 )

報(bào)告地點(diǎn):江蘇師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院學(xué)術(shù)報(bào)告廳(靜遠(yuǎn)樓1506室)

主辦單位:數(shù)學(xué)研究院、數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、科學(xué)技術(shù)研究院

報(bào)告人簡(jiǎn)介:

       劉衛(wèi)東,上海交通大學(xué)特聘教授,國(guó)家杰出青年科學(xué)基金獲得者,中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)理事。主要研究方向?yàn)榻y(tǒng)計(jì)學(xué)和機(jī)器學(xué)習(xí)等,目前已在AOS、 JASA、JRSSB、Biometrika、JMLR、ICML、IJCAI、IEEE TSP等專業(yè)頂尖期刊/會(huì)議上發(fā)表論文六十余篇。主持國(guó)家重點(diǎn)研發(fā)計(jì)劃課題1項(xiàng),國(guó)家杰出青年科學(xué)基金1項(xiàng),國(guó)家優(yōu)秀青年科學(xué)基金1項(xiàng)。

報(bào)告摘要: 

       Recently, reinforcement learning has gained prominence in modern statistics, with policy evaluation being a key component. Unlike traditional machine learning literature on this topic, our work places emphasis on statistical inference for the parameter estimates computed using reinforcement learning algorithms. While most existing analyses assume random rewards to follow standard distributions, limiting their applicability, we embrace the concept of robust statistics in reinforcement learning by simultaneously addressing issues of outlier contamination and heavy-tailed rewards within a unified framework. In this paper, we develop an online robust policy evaluation procedure, and establish the limiting distribution of our estimator, based on its Bahadur representation. Furthermore, we develop a fully-online procedure to efficiently conduct statistical inference based on the asymptotic distribution. This paper bridges the gap between robust statistics and statistical inference in reinforcement learning, offering a more versatile and reliable approach to policy evaluation. Finally, we validate the efficacy of our algorithm through numerical experiments conducted in real-world reinforcement learning experiments.



返回原圖
/

主站蜘蛛池模板: 博爱县| 马龙县| 溆浦县| 沂南县| 利川市| 双流县| 霍林郭勒市| 富平县| 峨山| 灌阳县| 南宫市| 桂平市| 库伦旗| 通渭县| 洞头县| 白水县| 乌兰浩特市| 顺义区| 雷波县| 周至县| 南澳县| 鹤岗市| 莱芜市| 桃园县| 蓝山县| 台北县| 华亭县| 社会| 井冈山市| 赣州市| 肥西县| 安丘市| 青州市| 长葛市| 鄂州市| 忻州市| 陕西省| 洛南县| 始兴县| 额济纳旗| 昌平区|