報 告 人:朱湘禪 研究員
報告題目:Stochastic Navier-Stokes equations via convex integration
報告時間:2023年11月29日(周三)下午16:00-16:50
報告地點:騰訊會議:867-643-3509
主辦單位:數學與統計學院、數學研究院、科學技術研究院
報告人簡介:
朱湘禪,中科院數學與系統科學研究院研究員,博士生導師。博士畢業于北京大學和德國比勒菲爾德大學,主要從事隨機偏微分方程,隨機分析和狄氏型理論等相關研究。目前已在Comm. Pure Appl. Math., J. Eur. Math. Soc., Ann. Probab., Probab., Theory Related Fields, Arch. Ration. Mech. Anal., Comm. Math. Phys., J. Funct. Anal., Trans. Amer. Math. Soc.等高水平期刊發表論文30余篇。
報告摘要:
In this talk, I will talk about our recent work on the three dimensional stochastic Navier-Stokes equations via convex integration method. First we establish non-uniqueness in law, existence and non-uniqueness of probabilistically strong solutions and non-uniqueness of the associated Markov processes. Second we prove existence of infinitely many stationary solutions as well as ergodic stationary solutions to the stochastic Navier-Stokes and Euler equations. Third we obtain global-in-time existence and non-uniqueness of probabilistically strong solutions to the three dimensional Navier–Stokes system driven by space-time white noise. In this setting, the convective term is ill-defined in the classical sense and probabilistic renormalization is required.