報 告 人:黃興 副教授
報告題目:Entropy-cost type Propagation of Chaos for Mean Field Interacting Particle System
報告時間:2023年12月8日(周五)上午10:00-11:00
報告地點(diǎn):騰訊會議:867-643-3509
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報告人簡介:
黃興,2017年博士畢業(yè)北京師范大學(xué)概率論與數(shù)理統(tǒng)計專業(yè),現(xiàn)為天津大學(xué)應(yīng)用數(shù)學(xué)中心副教授。研究方向:隨機(jī)分析。主持國家自然科學(xué)基金青年、面上項目,參與科技部重點(diǎn)研發(fā)項目。主要關(guān)注分布依賴的隨機(jī)微分方程的解的適定性,定量混沌傳播和分布性質(zhì)如正則性估計和維數(shù)無關(guān)的Harnack不等式等。已在Stochastic Process. Appl.,Electron. J. Probab.,J. Differential Equations 和Sci. China Math. 等國內(nèi)外學(xué)術(shù)期刊上發(fā)表論文近40篇。
報告摘要:
In this paper, the quantitative entropy-cost type propagation of chaos for mean field interacting particle system is obtained, where the interaction is bounded and the initial distribution of mean field interacting particles converges to that of corresponding McKean-Vlasov SDEs in Wasserstein distance. In the finite dimension case, the interaction is merely assumed to be bounded measurable and the noise can be multiplicative, while for the semi-linear SPDEs, the interaction is required to be bounded and Dini continuous.